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Robust Estimation of Experimentwise P Values Applied to a Genome Scan
of Multiple Asthma Traits Identifies a New Region of Significant Linkage
on Chromosome 20q13
Manuel A. R. Ferreira,1 Louise O’Gorman,1 Peter Le Souëf,2 Paul R. Burton,2
Brett G. Toelle,3 Colin F. Robertson,4 Peter M. Visscher,1 Nicholas G. Martin,1
and David L. Duffy1

1Queensland Institute of Medical Research, Brisbane, Australia; 2Department of Respiratory Medicine, Princess Margaret Hospital for
Children, Perth, Australia; 3Woolcock Institute of Medical Research, Sydney; and 4Department of Respiratory Medicine, Royal Children’s
Hospital, Melbourne

Over 30 genomic regions show linkage to asthma traits. Six asthma genes have been cloned, but the putative loci
in many linked regions have not been identified. To search for asthma susceptibility loci, we performed genomewide
univariate linkage analyses of seven asthma traits, using 202 Australian families ascertained through a twin proband.
House-dust mite sensitivity (Dpter) exceeded the empirical threshold for significant linkage at 102 cM on chro-
mosome 20q13, near marker D20S173 (empirical pointwise P p .00001 and genomewide P p .005, both un-
corrected for multiple-trait testing). Atopy, bronchial hyperresponsiveness (BHR), and forced expiratory volume in
1 s (FEV1) were also linked to this region. In addition, 16 regions were linked to at least one trait at the suggestive
level, including 12q24, which has consistently shown linkage to asthma traits in other studies. Some regions were
expected to be false-positives arising from multiple-trait testing. To address this, we developed a new approach to
estimate genomewide significance that accounts for multiple-trait testing and for correlation between traits and
that does not require a Bonferroni correction. With this approach, Dpter remained significantly linked to 20q13
(empirical genomewide P p .042), and airway obstruction remained linked to 12q24 at the suggestive level. Finally,
we extended this method to show that the linkage of Dpter, atopy, BHR, FEV1, asthma, and airway obstruction
to chromosome 20q13 is unlikely to be due to chance and may result from a quantitative trait locus in this region
that affects several of these traits.

To date, 16 independent samples from 12 countries have
been used in genomewide screens for asthma (MIM
600807) or atopy (MIM 147050) susceptibility loci (ta-
ble 1). These screens have identified 130 regions of sug-
gestive or significant linkage (Lander and Kruglyak
1995), leading to the positional cloning of four asthma
genes or gene complexes: ADAM33 (MIM 607114) at
20p13 (Van Eerdewegh et al. 2002); PHF11 (MIM
607796) and SETDB2 (MIM 607865) at 13q14 (Zhang
et al. 2003); DPP10 (MIM 608209) at 2q14 (Allen et
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al. 2003), and GPRA (MIM 608595) at 7p14 (Laitinen
et al. 2004). Recently, evidence for two new cloned genes
at 6p21 (Nicolae et al. 2005) and 5q33 (Noguchi et al.
2005) has been presented. It is likely that some of the
remaining linked regions for which a QTL has not yet
been characterized will prove spurious. In this respect,
replication studies are essential to prioritize regions for
subsequent fine mapping.

In this study, we searched for chromosomal regions
linked to asthma in a sample of 202 Australian families
ascertained through an asthmatic proband. These fam-
ilies were tested as part of a large asthma study per-
formed with the approval of the Human Research Ethics
Committee of the Queensland Institute of Medical Re-
search and with the written informed consent of all par-
ticipants. Detailed methods and phenotype descriptions
are provided elsewhere (Ferreira et al., in press). In brief,
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Table 2

Characteristics of 591 Participants from 202 Families Used
for a Genome Scan of Multiple Asthma Traits

Characteristics Parents Twins and Sibs

Subjects:
Total 180 411
With questionnaire 7% 100%
With full testing 0% 99%

Female sex 59% 57%
Mean (range) age [years] 63 (45–80) 38 (22–75)
Ever a smoker 46% 50%
Current smoker 0% 26%
Asthma 23% 38%
Doctor-diagnosed asthma 23% 31%
Positive BHR test … 48%
Atopy … 73%
Positive SPT for D. pteronyssinusa … 58%

predictedFEV � 0.71 … 6%
Mean (range) FEV1 … 3.3 (.7–5.7)
Mean (range) FEV1/FVC … .8 (.4–1.0)
IgE geometric mean (range) [IU/ml] … 71 (.6–6,908)

a SPT p skin-prick test.

four affection and three continuous traits were measured
in 411 siblings but not in the 180 available parents from
these families. The affection traits were self-reported
asthma, bronchial hyperresponsiveness (BHR [MIM
600807]), atopy, and house-dust mite (Dermatophago-
ides pteronyssinus) sensitivity (Dpter). A participant was
considered to be affected with asthma if he or she an-
swered “Yes” or “Yes, told to me by a doctor” to the
question “Have you ever suffered from asthma or wheez-
ing?” and answered “Yes” to the question “Have you
ever taken any medicine for asthma or wheezing?” A
histamine challenge test was considered to have a pos-
itive result if the participant experienced a drop in forced
expiratory volume in 1 s (FEV1) of �20% of the post–
saline inhalation FEV1 after the last dose of histamine
was given. A participant was classified as atopic if at
least 1 of 11 common allergens tested elicited a mean
wheal diameter at least 3 mm greater than the negative
control wheal. Similarly, a skin-prick test for Dpter was
considered to have positive a result if the mean wheal
diameter was 3 mm greater than the negative control
wheal. The three continuous traits were baseline FEV1;
baseline airway obstruction, as measured by FEV1 di-
vided by forced vital capacity (FEV1/FVC); and total
serum immunoglobulin E (IgE) levels. These were all
measured in accordance with standard procedures
(Ferreira et al., in press) and were normalized prior
to analysis.

The characteristics of the 591 participants used for
this genome scan are summarized in table 2. We have
shown elsewhere that the seven traits of interest have a
high reliability (test-retest correlation range 0.67–0.99),
are all heritable (heritability range 0.38–0.71), have
cross-trait phenotypic correlations across a wide range
(0.03–0.81; mean 0.35), and are regulated to a great
extent by specific genetic factors (Ferreira et al., in press).
Nonetheless, there was some degree of genetic overlap,
particularly between atopy and both asthma and BHR
and, as expected, between markers of allergic sensiti-
zation (atopy, Dpter, and IgE).

In addition to these phenotypes, genomewide geno-
typing data were obtained for the 202 families as part
of four recent twin studies of asthma (Ferreira et al., in
press), neuroticism (Kirk et al. 2000), cardiovascular dis-
ease (Beekman et al. 2003), and other common disorders
(Whitfield et al. 2000). When data from these four
sources were combined, the genome-scan sample con-
sisted of 87 families (43%) with no parents genotyped,
50 (25%) with one parent genotyped, and 65 (32%)
with both parents genotyped. Of 218 sib pairs available
for analysis, 14 (6%) were genotyped at 201–300 mark-
ers, 104 (48%) at 301–500 markers, 54 (25%) at 501–
1,000 markers, and 46 (21%) at 1,001–1,544 markers.
Familial relationships were verified using GRR (Abeca-
sis et al. 2001), Mendelian inconsistencies were identi-

fied and removed using SIB-PAIR 0.99.9 (see Web Re-
sources), and unlikely recombinants were identified and
removed using MERLIN 1.0 (Abecasis and Wigginton
2005). The marker genetic positions were interpolated
via locally weighted linear regression from the National
Center for Biotechnology Information (NCBI) build 34.3
physical map positions and the published Rutgers ge-
netic map (Kong et al. 2004), and they are expressed in
Kosambi cM (see genetic map site in Web Resources).
The average multipoint entropy information content
(Kruglyak et al. 1996) was 0.57 (range 0.15–0.85), com-
puted with MERLIN at the marker closest to the middle
of the chromosome and averaged over the 22 autosomes.
The average heterozygosity for the autosomal markers
was 75%. The 218 available sib pairs were genotyped,
on average, at 624 autosomal markers (range 201–
1,544). Intermarker distances were estimated for each
sib pair and then were averaged across the 218 pairs.
The mean intermarker distance was 7.1 cM (range 2.8–
15.8).

Two sets of univariate linkage analyses were per-
formed. For both sets, the probabilities that two siblings
shared 0, 1, or 2 alleles identical by descent (IBD) were
estimated every 2 cM with MERLIN. For the four af-
fection traits, the Whittemore and Halpern (1994) Sall

statistic was calculated, and Z scores were converted into
LOD scores by use of the Kong and Cox (1997) ex-
ponential model implemented in MERLIN. This analysis
is appropriate for the type of sample-selection procedure
used. For the three continuous traits, IBD probabilities
were imported into SOLAR 2.1.4, and maximum-like-
lihood univariate variance-components linkage analysis
was performed as implemented by Almasy and Blangero



1078 Am. J. Hum. Genet. 77:1075–1085, 2005

(1998). In addition, the fixed effects of significant (P !

) covariates—age, sex, height (for FEV1 only), and.05
regular smoking (for FEV1/FVC only)—were included in
the means model. We have shown elsewhere that the
ascertainment procedure had minimal impact on vari-
ance-components estimates of FEV1, FEV1/FVC, and IgE
(Ferreira et al., in press), which reflects the low phe-
notypic correlations between these traits and asthma
(range 0.25–0.29). Nonetheless, we used the proband-
ascertainment correction implemented in SOLAR for
variance-components linkage analyses. Residual kurtosis
was 1.5 for FEV1, 0.43 for FEV1/FVC, and �0.36 for
IgE.

Since the distribution of linkage test statistics was not
comparable between affection and continuous traits or
even between different continuous traits, all LOD scores
were converted to empirical pointwise P values. In brief,
to assess pointwise significance, we used MERLIN to
generate 1,000 genome-scan replicates that retained the
original phenotypes but had new genotypes simulated
under the null hypothesis of no linkage for all auto-
somes, preserving the same allele frequencies, missing
data pattern, and marker spacing. Linkage analysis was
then performed for each trait with each genome-scan
replicate, as described for the real data set. LOD scores
observed with these simulated data sets were entirely
due to chance. Once each trait was analyzed with the
real genome scan and with the 1,000 genome-scan rep-
licates, all LOD scores for that trait were combined into
a single distribution. The empirical pointwise P value
for each LOD l, obtained with the real or simulated data
sets, was then computed as the proportion of LOD
scores in this distribution that were �l. All empirical
pointwise P values are conveniently expressed as the
�log10 of the P value (�log10P).

To assess genomewide significance, we further inves-
tigated how often a given �log10P was expected to be
observed in a genome scan by chance alone. This was
performed for each of the seven traits individually.
Briefly, for each of the genome-scan replicates described
above, we recorded the highest empirical pointwise
�log10P observed for each chromosome and counted the
number of chromosomes exhibiting a �log10P equal to
or greater than a given threshold j. The empirical ge-
nomewide thresholds for suggestive or significant link-
age (Lander and Kruglyak 1995) were defined as the
threshold j for which we observed, on average, 1 or 0.05
peaks per genome scan with a , respectively.� log P � j10

For all traits, a �log10P of 2.1 was the threshold for
suggestive linkage, and a �log10P of 4.0 was the thresh-
old for significant linkage.

The strongest evidence of linkage in the univariate
analyses occurred at 96–102 cM on chromosome 20q13,
near markers D20S171 and D20S173 (fig. 1A–1G). At
this location, significant linkage was observed for Dpter

(empirical pointwise ), and suggestive� log P p 4.9310

linkage was observed for atopy ( ), BHR� log P p 3.2110

( ), and FEV1 ( ). The� log P p 2.64 � log P p 2.4510 10

mean proportion of alleles shared IBD at 20q13 was
0.62 (95% CI 0.55–0.69) for sib pairs concordant af-
fected for Dpter, 0.52 (95% CI 0.46–0.58) for discor-
dant pairs, and 0.49 (95% CI 0.39–0.58) for concordant
unaffected pairs. Similar patterns of allele sharing were
observed for atopy and BHR. The proportion of vari-
ance in FEV1 explained by a QTL in this region was
0.50 (95% CI 0.21–0.79), but this figure should be in-
terpreted with care because effect sizes estimated from
genomewide scans are known to have a large upward
bias (Goring et al. 2001). Sixteen additional regions ex-
ceeded the threshold of suggestive linkage for at least
one of the seven traits (table 3).

Some of the regions identified with univariate analyses
were expected to be false positives arising from multiple-
trait testing. The first approach used to address this
problem was to perform variance-components analysis
of multiple asthma traits by use of the algorithm imple-
mented in SOLAR 3.0.3 and outlined by Williams et al.
(1999b). Multivariate linkage analyses of the three con-
tinuous traits (FEV1, FEV1/FVC, and IgE) improved the
evidence of linkage at 20q13 and 12q24, compared with
the individual univariate analyses of these three traits
(not shown). However, linkage models could not be con-
sistently maximized when affection traits were added to
the multivariate analysis of the three continuous traits.
In addition, estimation of empirical significance was not
feasible, with one genome-scan replicate of three traits
taking ∼2 wk to run on a 2.80-GHz processor. As a
result, multivariate analysis could not be used to over-
come the problem of multiple-trait testing.

We then developed and applied a simple approach to
estimate genomewide significance while accounting for
multiple-trait testing and for the correlation structure
between traits. To exemplify our approach, consider the
empirical pointwise �log10P observed for the seven traits
at position 102 cM on chromosome 20: 1.04 (asthma),
2.59 (BHR), 3.21 (atopy), 4.93 (Dpter), 2.45 (FEV1),
0.95 (FEV1/FVC), and 0.30 (IgE). Note that these
�log10P refer specifically to position 102 cM, whereas
table 3 reports the highest �log10P for each trait within
the 96–102 cM range. First, we sorted these �log10P
values in descending order to create the observed vector
of ordered �log10P values, , 3.21, 2.59, 2.45,V p [4.93Q

1.04, 0.95, 0.30]. This same procedure was used to cre-
ate one simulated vector (VNull) for each position of the
1,000 genome-scan replicates simulated under the null
hypothesis of no linkage (see above). We analyzed 1,796
positions throughout the 22 autosomes (3,548 cM at 2-
cM intervals), and thus 1,796 VNull vectors of ordered
�log10P values were created for each genome-scan rep-
licate. Note—and this is crucial—that the order of traits



Figure 1 Genomewide linkage results for asthma and related traits. Autosomes are arranged by number from p-ter to q-ter, with genetic
distance expressed as Kosambi cM (0–3,548 cM). A–D, For the four affection traits, the Whittemore and Halpern (1994) Sall statistic was
calculated, and Z scores were converted into LOD scores by use of the Kong and Cox (1997) exponential model implemented in MERLIN
1.0. LOD scores were then converted to empirical pointwise �log10P values by use of 1,000 genome-scan replicates simulated under the null
hypothesis of no linkage. The same replicates were used to estimate the thresholds for genomewide suggestive and significant linkage (see main
text). The number of families with two or more affected sibs was 34 for asthma, 49 for BHR, 115 for atopy, and 69 for Dpter. E–G, For the
three continuous traits, IBD probabilities were imported into SOLAR, and maximum-likelihood univariate variance-components linkage analysis
was performed with the fixed effects of covariates (see main text) and proband-ascertainment correction. LOD scores were converted to empirical
pointwise �log10P values, and genomewide thresholds were estimated as described above. The minimum value for the Y-axis corresponds to
�log10(.5) (i.e., ). The top horizontal line shows the empirical genomewide threshold for significant linkage ( , for allLOD p 0 � log P p 410

traits), and the bottom line, for suggestive linkage ( ). H, Multipoint entropy information content (Kruglyak et al. 1996). The� log P p 2.110

average information content was 0.57, computed with MERLIN at the marker closest to the middle of the chromosome and averaged over the
22 autosomes.
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Table 3

Univariate Linkage Results with 5log10P � 2

REGION

LOCATIONa

(cM) PEAK MARKER(S)

EMPIRICAL POINTWISE �log10P FORb

Asthma BHR Atopy Dpter FEV1 FEV1/FVC IgE

1q24-q25 182–184 D1S196, D1S1589 3.20 … … … … … 2.08
2q14 136 D2S347 … … … 2.19 … … …
2q35 220 D2S434 … … 2.43 … … … …
3p23 60 D3S1768 … … … 2.86 … … …
3q12 114 D3S1271 … … 2.75 … … … …
4p16 8 D4S412 2.60 … … … … … …
4q21 94 D4S400 … … … … … 2.07 …
5q13 90 D5S424 … … … … 2.71 … …
6p21 62–64 D6S426, D6S1017 … 2.20 2.01 … … … …
8p21 52 D8S1771 … … … … 2.26 … …
9q34 142 D9S290 … … … … … 2.02 …
10q22 92–104 D10S535, D10S1686 … … … 3.20 … … 2.26
11p15 22 D11S1999 2.55 … … … … … …
12q24 166–168 D12S343, D12S1723 … … … … 2.78 3.53 …
17q21 72–74 D17S791 2.41 … 2.13 … … … …
17q25 128 D17S784 … … … … 2.35 … …
18p11 30 D18S843 2.70 … … … … … …
19p13 20 D19S1034 2.87 … … … … … …
20q13 96–102 D20S171, D20S173 … 2.64 3.21 4.93 2.45 … …

a Marker locations are given in Kosambi cM and have been interpolated from published physical positions and
genetic maps (Kong et al. 2004).

b Empirical pointwise P values and genomewide thresholds were estimated for each trait from 1,000 genome-scan
replicates generated under the null hypothesis of no linkage (see main text for details). Empirical genomewide thresholds
for all traits were 2.1 for suggestive linkage and 4.0 for significant linkage.

does not have to be the same in the observed vector VQ

and in the simulated vectors VNull, a property that forms
the basis for correction of multiple-trait testing. Second,
to compute the genomewide P value for trait k of VQ,
we counted the proportion of genome-scan replicates
that had at least one VNull vector with a highest �log10P
greater than or equal to the �log10P recorded for trait
k of VQ.

When this approach was applied to Dpter at 20q13,
42 of 1,000 genome-scan replicates had one or more
VNull vectors with a highest . Therefore,� log P � 4.9310

the genomewide P value for Dpter at this position re-
mained significant after multiple-trait testing was cor-
rectly accounted for ( ). Note that, if we hadP p .042
applied the traditional approach of estimating the ge-
nomewide significance for Dpter individually, then P
would be equal to .005—that is, there were 5/1,000
Dpter genome-scan replicates with one or more positions
that exceeded a �log10P of 4.93. If a Bonferroni cor-
rection were then used to account for multiple-trait
testing, the genomewide P would lie between .025 (cor-
rection for five independent traits, as identified by prin-
cipal-components analysis) and .035 (correction for
seven traits tested). Of the remaining 16 regions of sug-
gestive linkage shown in table 3, only the linkage be-
tween 12q24 and FEV1/FVC was at the suggestive level
after multiple-trait testing was accounted for, with an

expected number of false positives per genome scan of
0.741 ( ).P p .509

Six traits were linked to chromosome 20q13, although
only Dpter showed linkage at the significant level (fig.
2). Next, we investigated whether the simultaneous link-
age of multiple traits to 20q13 could be attributed either
to a pleiotropic QTL in this region or simply to chance.
For this purpose, we extended the approach described
above to estimate the probability that a genome scan
simulated under the null hypothesis of no linkage could
have one or more VNull vectors with the sum of the k
highest �log10P values (i.e., ) greaterk

S p � � log Pk 10 iip1

than or equal to the sum of the k highest �log10P values
of VQ at 102 cM on 20q13, where (tablek p 1, 2, … , 7
4). A similar method was recently proposed to combine
P values obtained in performing association analysis of
multiple SNPs, such as in genomewide association stud-
ies (Hoh et al. 2001; Dudbridge and Koeleman 2004).
The significance of the Sk statistics computed at VQ was
expected to decrease as k approached the number of
traits influenced by an underlying QTL and to stabilize
thereafter (for similar examples, see Hoh et al. [2001]
and Dudbridge and Koeleman [2004]). Note that the
same seven traits were analyzed with the real genome
scan and with each genome-scan replicate, which thus
preserved the original correlation structure between traits
in the analyses performed under the null hypothesis.
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Figure 2 Details of linkage results on chromosome 20 for Dpter
(red), atopy (orange), BHR (light green), FEV1 (dark green), asthma
(light blue), and FEV1/FVC (dark blue). The solid horizontal line shows
the empirical genomewide threshold for significant linkage, and the
dashed line shows the threshold for suggestive linkage (see main text).
Multipoint entropy information content (Kruglyak et al. 1996) is also
shown (dotted line). Highlighted at the top are the positions of
ADAM33 (unblackened arrowhead), the centromere (blackened ar-
rowhead), and the markers genotyped in the 20q terminal region. Note
that the X-axis scale ends at 102 cM, although the last X-axis label
is 100 cM for convenience.

Table 4

Empirical Genomewide Significance of the Seven Sk Sum Statistics
Recorded at Position 102 cM on Chromosome 20q13

Rank (k) Trait �log10P
a

Cumulative
�log10P (Sk) Pb

1 Dpter 4.93 4.93 .042
2 Atopy 3.21 8.14 .026
3 BHR 2.59 10.73 .017
4 FEV1 2.45 13.18 .012
5 Asthma 1.04 14.22 .011
6 FEV1/FVC .95 15.17 .007
7 IgE .30 15.47 .007

a Empirical pointwise �log10P for each trait at 102 cM on 20q13.
b Empirical genomewide significance of Sk. Corresponds to the pro-

portion of genome-scan replicates with one or more positions with an
Sk statistic greater than or equal to the Sk observed at 20q13 in the
real scan. The probabilities were estimated from 1,000 genome-scan
replicates simulated under the null hypothesis of no linkage (see main
text).

When only the highest �log10P at 20q13 was consid-
ered (4.93 for Dpter), the genomewide P value was .042,
as described above. However, when we considered the
cumulative observed for Dpter and atopy� log P10

(8.14), only 26/1,000 genome-scan replicates had at least
one simulated vector with the sum of the two highest

( ). If the linkage of atopy to� log P � 8.14 P p .02610

20q13 was spurious or a result of the residual correlation
between this trait and Dpter, then no improvement in
significance would be expected when both traits were
considered. Similarly, only 7/1,000 genome-scan repli-
cates had one or more simulated vectors with a sum of
the six highest �log10P values �15.17 ( ). EvenP p .007
the addition of the FEV1/FVC trait, which had an em-
pirical pointwise �log10P of only 0.95, considerably in-
creased the evidence for linkage in this region. On the
other hand, taking the IgE trait into consideration had
no impact on the overall linkage significance, which sug-

gests that a QTL in this region either does not regulate
variation in total serum IgE levels or does so only to a
degree that is undetectable in this sample. Therefore, our
results suggest that the simultaneous linkage of Dpter,
atopy, BHR, FEV1, asthma, and FEV1/FVC to chro-
mosome 20q13 is unlikely to be due to chance or to the
residual correlation between these traits and may result
from a pleiotropic or multiple QTL that map(s) to this
region.

Finally, since we computed seven Sk sum statistics in
this process, we estimated the global genomewide sig-
nificance of linkage between the six traits and 20q13,
using a permutation test similar to that proposed by Hoh
et al. (2001). (Note: The SAS routines used to estimate
genomewide significance in the present study are avail-
able from the authors upon request.) In this case, the
test consisted of counting the proportion of genome-scan
replicates that had one or more VNull vectors with any
of the seven Sk sum statistics as significant as the Sk

statistic observed at 20q13 when (withk p 6 P p
). We observed 23 of such genome-scan replicates.007

among the 1,000 total replicates, and thus the global
genomewide significance for multiple linkage at 20q13
was . Although it was beyond the scope of thisP p .023
study, we performed simulations that showed that this
method of combining results from univariate linkage
analyses can be as powerful as formal multivariate var-
iance-components analysis in detecting a pleiotropic
QTL, with the advantage that it is computationally fea-
sible for any number of traits, even if these are analyzed
with different linkage statistics (not shown).

In this study, we searched for chromosomal regions
linked to asthma traits measured in 202 Australian fam-
ilies ascertained through a twin proband. Univariate
analyses of seven traits identified 1 region of significant
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linkage and 16 of suggestive linkage. Some of these
regions have previously been identified by more than one
study at a suggestive or significant level, in particular
2q33-q35, 6p21, and 12q24 (table 1). However, it was
likely that some were, in fact, false-positives arising from
multiple-trait testing. The most common approach to
address this issue is to perform multiple univariate anal-
yses and then apply a Bonferroni correction to the ob-
served P values. This approach, however, has well-
known limitations. First, the significance of a particular
position (i.e., marker) is assessed separately for each
trait, which can result in many traits being linked to the
same position but none at a particularly significant level.
Second, the Bonferroni correction can be conservative
in some situations and, thus, may contribute to a re-
duction in the power of the analysis.

One alternative is to perform a principal-components
analysis of all traits tested and then analyze only the
extracted independent factor scores. This approach has
been applied previously to asthma (Holberg et al. 2001).
However, although it overcomes the problem of testing
correlated traits, this approach minimizes but does not
entirely overcome the problem of testing multiple traits,
and it may result in testing of phenotypes that are not
comparable to those in other studies. Another alternative
is to perform a full multivariate analysis of all pheno-
types tested. This was recently applied to traits such as
alcoholism (Williams et al. 1999a), dyslexia (Marlow et
al. 2003), and metabolic syndrome (Olswold and de An-
drade 2003). Although theoretically desirable, the mul-
tivariate approach also has some limitations. First, mul-
tivariate linkage is not always guaranteed to provide
increased power compared with that of individual uni-
variate analyses. Martin et al. (1997) showed that power
is improved if the pattern of factor loadings in the QTL
is correctly specified but is reduced if it is incorrectly
specified. Furthermore, the gain in power seems to be
considerable only when a pleiotropic QTL and the re-
sidual sources of variation induce cross-trait correlations
in opposite directions (Allison et al. 1998; Amos et al.
2001; Evans and Duffy 2004). An additional limitation
of multivariate analysis is computational. The two meth-
ods available for multivariate linkage are the variance-
components method (Eaves et al. 1996; Blangero and
Almasy 1997; de Andrade et al. 1997) and a modified
Haseman-Elston method (Amos et al. 1990). In theory,
variance components can be extended to any number of
traits, but, in practice, only a restricted number of traits
can be effectively analyzed with current tools, particu-
larly if both continuous and affection traits are being
measured or if empirical significance will be estimated.
This was the case for the multivariate analyses reported
here. Continuous and affection traits could not be an-
alyzed simultaneously, and empirical significance could
not be assessed. Similarly, at present, the multivariate

Haseman-Elston method is limited to sib pairs and pro-
vides lower power than does the multivariate variance-
components method (Amos et al. 2001).

Thus, commonly used approaches to address multiple-
trait testing in the context of linkage analyses are limited
in their power and/or applicability. We sought to develop
a general method for the assessment of experimentwise
linkage significance that took into account the infor-
mation provided by the multiple univariate analyses per-
formed. The approach outlined and implemented here
efficiently overcomes the acute problem of multiple-trait
testing without resorting to a Bonferroni correction. In
the first published genomewide screen for asthma, Dan-
iels et al. (1996) used a permutation method that is sim-
ilar in principle to our approach; unfortunately, very few
genomewide linkage studies adopted their method. In
addition, the approach we describe here can be extended
to assess the evidence for linkage at a particular position
across a number of traits. When this method was applied
to our genome scan of seven asthma traits, two regions
were identified that exceeded the genomewide threshold
for suggestive (12q24) or significant (20q13) linkage.
Chromosome 12q24 was linked to the lung function
traits FEV1/FVC and FEV1. To date, three studies have
reported suggestive or significant linkage to 12q23-q24
(table 1), but a major asthma gene has yet to be cloned
in this region. A number of association studies suggest
that the nitric oxide synthase 1 gene (NOS1 [MIM
163731]) is a likely candidate (Grasemann et al. 1999;
Gao et al. 2000; Wechsler et al. 2000; Ali et al. 2003;
Shao et al. 2004).

However, the most significant evidence for linkage was
observed at a novel region, chromosome 20q13. Mul-
tiple traits were linked to this region, including Dpter,
atopy, BHR, FEV1, asthma, and FEV1/FVC. The simul-
taneous linkage of these six traits to 20q13 was expected
by chance alone in only 7 of 1,000 genome scans. There-
fore, we suggest that a pleiotropic QTL and/or multiple
clustered QTL in this region contribute(s) to the varia-
tion of Dpter, atopy, BHR, and FEV1, although to dif-
ferent degrees. A QTL at 20q13 may also directly influ-
ence asthma status and variation in FEV1/FVC. To our
knowledge, no study has reported suggestive or signif-
icant linkage of asthma traits to this region. There are
many examples of genes shown to be associated with
asthma for which suggestive or significant linkage was
reported in only a small number of independent samples,
including ADAM33 and DPP10. This may result from
a combination of factors—namely, genetic heterogeneity
and, in the case of loci located near terminal positions,
low inheritance information available toward the telo-
meres. A number of chromosomes in our genome scan
displayed such effects, but the entropy information con-
tent at the last 10 cM of chromosome 20—where our
six peaks lie—ranged from 0.40 to 0.60, which is com-
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parable to the genomewide mean (0.57). Singlepoint
analyses provided further confidence that these results
are unlikely to be driven by only one marker or to be
an artifact caused by end-of-map problems. Dpter showed
singlepoint LOD scores �1.0 for D20S100, UT254,
TTTA093, and D20S171 and �0.7 for AAT269,
GATA45B10, UT1772, and D20S173 (see fig. 2 for
positions).

Finally, the 20q13 linkage region is broad, with the
equivalent of a 1-LOD drop interval of 12 cM (8.7 Mb)
situated between D20S100 and 20qter. At present, there
are 117 known genes in this segment, of which only the
cadherin-like 26 gene (CDH26) stands out as a candi-
date gene for atopy or asthma. Although ADAM33 is
also located on chromosome 20, it is 54.7 Mb distant
and, thus, is very unlikely to explain our linkage signal.
However, we note that most, if not all, cloned asthma
genes had no obvious functional relevance when first
identified. Therefore, subsequent fine-mapping strategies
are warranted across the entire 20q13 linkage region.
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